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Given two matrices X,B ∈ Rn×m and a set A ⊆ Rn×n, 
a Procrustes problem consists in finding a matrix A ∈ A
such that the Frobenius norm of AX − B is minimized. 
When A is the set of the matrices whose symmetric part is 
positive semidefinite, we obtain the so-called non-symmetric 
positive semidefinite Procrustes (NSPSDP) problem. The 
NSPSDP problem arises in the estimation of compliance 
or stiffness matrix in solid and elastic structures. If X
has rank r, Baghel et al. (2022) [4] proposed a three-step 
semi-analytical approach: (1) construct a reduced NSPSDP 
problem in dimension r × r, (2) solve the reduced problem 
by means of a fast gradient method with a linear rate 
of convergence, and (3) post-process the solution of the 
reduced problem to construct a solution of the larger original 
NSPSDP problem. In this paper, we revisit this approach of 
Baghel et al. and identify an unnecessary assumption used 
by the authors leading to cases where their algorithm cannot 
attain a minimum and produces solutions with unbounded 
norm. In fact, revising the post-processing phase of their 
semi-analytical approach, we show that the infimum of the 
NSPSDP problem is always attained, and we show how 
to compute a minimum-norm solution. We also prove that 

✩ We acknowledge the support by the European Union (ERC consolidator, eLinoR, no 101085607).
* Corresponding author.

E-mail addresses: Nicolas.GILLIS@umons.ac.be (N. Gillis), Stefano.SICILIA@umons.ac.be (S. Sicilia).
1 Part of this work was done when SS was with the Division of Mathematics, Gran Sasso Science Institute, 

L’Aquila, Italy. SS is member of the Gruppo Nazionale Calcolo Scientifico-Istituto Nazionale di Alta 
Matematica (GNCS-INdAM).

https://doi.org/10.1016/j.laa.2025.06.005
0024-3795/© 2025 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, 
and similar technologies.

https://doi.org/10.1016/j.laa.2025.06.005
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/laa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.laa.2025.06.005&domain=pdf
https://github.com/StefanoSicilia/NS_Procr_min_norm
https://github.com/StefanoSicilia/NS_Procr_min_norm
https://github.com/StefanoSicilia/NS_Procr_min_norm
mailto:Nicolas.GILLIS@umons.ac.be
mailto:Stefano.SICILIA@umons.ac.be
https://doi.org/10.1016/j.laa.2025.06.005


22 N. Gillis, S. Sicilia / Linear Algebra and its Applications 724 (2025) 21--48 

the symmetric part of the computed solution has minimum 
rank bounded by r, and that the skew-symmetric part has 
rank bounded by 2r. Several numerical examples show the 
efficiency of this algorithm, both in terms of computational 
speed and of finding optimal minimum-norm solutions.

© 2025 Elsevier Inc. All rights are reserved, including those 
for text and data mining, AI training, and similar 

technologies.

1. Introduction

A structured mapping problem associated to the set A ⊆ Rn×n consists in finding a 
matrix A ∈ A such that AX = B, where X,B ∈ Rn×m are two fixed matrices; see, e.g., 
[1,18] and the references therein. The corresponding Procrustes problem aims to solve 
a mapping structured problem when it is inconsistent, that is, when there is no matrix 
A ∈ A such that AX = B, leading to the following optimization problem

inf 
A∈A

‖AX −B‖, where ‖ · ‖ is some norm. (1)

Many constraints have been studied for the set A, such as the orthogonal matrices 
arising in computer graphics [9,12], Jordan algebra and Lie algebra for which Adhikari 
and Alam have provided an analytical solution [2], positive semidefiniteness in [5,22] 
arising in elastic structures, and rank-r matrices with additional constraints in [17], to 
name just a few.

In this paper we focus on a set A requiring a semidefinite property of the matrix. 
There are two main cases and the set A is one of the following

Sn
� := {M ∈ Rn×n : M � 0}, or Nn

� := {M ∈ Rn×n : (M + M�) � 0},

where M � N means that M − N is positive semidefinite, and 0 is the zero matrix 
of appropriate dimension. The set Sn

� denotes the set of all symmetric and positive 
semidefinite matrices, while the set Nn

� contains all the matrices whose symmetric part is 
positive semidefinite. Given X,B ∈ Rn×m, the positive semidefinite Procrustes (PSDP) 
problem is

inf 
A∈Sn

�
‖AX −B‖2

F , (P)

while the non-symmetric positive semidefinite Procrustes (NSPSDP) problem is

inf 
A∈Nn

�
‖AX −B‖2

F , (NP)

where ‖ · ‖F denotes the Frobenius norm. These problems are both convex, since they 
minimize a convex function over a convex set. While (P) is well-known in the literature 
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and has been studied in many works [5,8,13,15,23], (NP) is more recent and has been 
considered in [4,14,15]. Both PSDP and NSPSDP problems arise in the estimate of local 
compliance matrices during deformable object in various engineering applications; see 
[4,14]. The compliance matrix represents the Green function matrix that corresponds to 
the unknown A in (NP). The estimation of A is based on the observations of the forces, 
stored in the columns of X, and their associated displacements, stored in the columns 
of B, for a total of m measurements. When the deformable object is a passive object, 
that is, it does not generate energy in deformation, the physical properties of the model 
impose that p�Ap ≥ 0, where p is the point load, which is implied by A ∈ Nn

�. Thus, 
when estimating A under noisy measurements, it is crucial to impose the constraint 
A ∈ Nn

� in the optimization problem; see [16] and [14, Section III] for more details about 
the physical model.

1.1. Contributions and outline of the paper

For both (P) and (NP), the original n × m dimensional problem can be reduced 
to a problem of dimension r × r, where r is the rank of X; see [8] for (P), and [4] 
for (NP). This is referred to as a semi-analytical approach because the smaller r × r

dimensional problem still needs to be solved with iterative methods, and [4,8] relied on 
an optimal first-order method with linear convergence. It is important to note that the 
solution of (P) is not always attained [8]; see Section 2.1 where we recall this result. The 
approach in [4] follows closely that of [8], and concludes that the solution of (NP) is also 
not always attained. However, it turns out this result is not correct, unless one uses an 
additional constraint within the NSPSDP problem, which is not explicitly stated in [4].

In this work, inspired by the approach of [4], we provide an updated theorem about 
the NSPSDP problem, namely, we show that the infimum is always attained and pro
vide a semi-analytical solution (Theorem 3.1). Moreover, we show how to compute a 
minimum-norm solution for which we also prove low-rank properties, namely the sym
metric part has rank at most r, and the skew-symmetric part at most 2r (Theorem 3.4). 
This allows us to propose a new algorithmic approach for the NSPSDP problem, which 
always provides optimal and minimum-norm solutions, as opposed to [4].

The paper is organized as follows. In Section 2, we recall the semi-analytical methods 
proposed in [8] for solving (P) and in [4] for solving (NP). We discuss in detail the 
main issue of the latter approach, namely the introduction of an unnecessary additional 
constraint in the problem, which leads to non-optimal and unbounded solutions. In 
Section 3, we show how to fix this issue, and prove that the infimum of the NSPSDP 
problem is always attained. We also discuss how to compute the minimum-norm solution 
and show its low-rank properties. In Section 4, we develop an algorithm relying on the 
theoretical results from Section 3. Section 5 shows the effectiveness of this new algorithm 
compared to that of [4] in several numerical examples.
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2. An overview of Procrustes problems with positive semidefinite constraints

In this section, we briefly recall the existing approaches by Gillis and Sharma [8] for 
solving (P), and by Baghel et al. [4] for solving (NP). For the latter, we provide a revised 
version of their main theorem, stating explicitly the hidden constraint in their result.

2.1. The PSDP problem

Let us briefly recall the existence of optimal solutions in the PSDP problem; this will 
allow us to compare and shed light on the NSPSD case.

Before doing this, let us recall an important result about positive semidefinite char
acterization that will be used throughout the paper.

Lemma 2.1. [3] Let R ∈ Rn×n be a symmetric matrix partitioned as

R =
(
B C�

C D

)
.

Then R � 0 if and only if the following three conditions hold: (1) B � 0, (2) 
ker(B) ⊆ ker(C), and (3) D−CB†C� � 0, where B† denotes the Moore-Penrose pseudo
inverse of B.

When the matrix X has full row rank, the solution to problem (P) is unique, as 
ensured by the next lemma.

Lemma 2.2. [23, Theorem 2.2] Let X,B ∈ Rn×m and assume that X has rank n. Then 
the infimum of problem (P) is attained for a unique solution A� ∈ Sn

�.

Proof. This follows from the fact that the problem is strongly convex. �
Now we state the major result of [8], where a minimum-norm solution of the Procrustes 

problem (P) is provided via a semi-analytical approach.

Theorem 2.3. Let X,B ∈ Rn×m and consider the SVD

X = UΣV � := (U1 U2 )
(

Σ1 0
0 0

)
(V1 V2 )� ,

where Σ1 ∈ Rr×r and r = rank(X). Then

inf 
A∈Sn

�
‖AX −B‖2

F = min 
A11∈Sr

�
‖A11Σ1 − U�

1 BV1‖2
F + ‖BV2‖2

F . (2)

Moreover, letting
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Â11 := arg min
A11∈Sr

�

‖A11Σ1 − U�
1 BV1‖2

F ,

and Z := U�
2 BV1Σ−1

1 , it holds that

1. If ker(Â11) ⊆ ker(Z), the matrix

A� = U1Â11U
�
1 + U2ZU�

1 + U1Z
�U�

2 + U2KU�
2 ,

where K = ZÂ†
11Z

�, is the unique matrix that attains the infimum in (2) and whose 
rank, Frobenius norm and spectral norm are minimum.

2. Otherwise the infimum is not attained, and we can construct a solution A(ε)
� ∈ Sn

�
with minimal rank, minimum Frobenius norm and minimum spectral norm, such that

‖A(ε)
� X −B‖2

F ≤ inf 
A∈Sn

�
‖AX −B‖2

F + ε,

for any ε > 0 sufficiently small.

Proof. We refer to [8, Theorem 1] and [8, Corollary 1] for the proof. �
Remark 1. The explicit expressions for ε and A(ε)

� in Theorem 2.3 in the case the infi
mum is not attained can be found in [8]. These formulas are analogous to the ones of 
Theorem 2.5 presented in the next section.

2.2. The NSPSDP problem

The result of Theorem 2.3 for problem (P) has been adapted by Baghel et al. [4] 
for (NP), but the approach they proposed contains some incorrect statements. Before 
showing the issues in the main result of [4], we start by recalling an analogous result to 
Lemma 2.2 for the NSPSDP problem, which guarantees a unique solution when X has 
full row rank.

Lemma 2.4. [15, Theorem 2.4.6] Let X,B ∈ Rn×m and assume that X has rank n. Then 
the infimum of problem (NP) is attained for a unique solution A� ∈ Nn

�.

Proof. This follows from the fact that the problem is strongly convex. �
Now we discuss the major result in [4]. Let us define the set

C =
{(

C11 0
C12 C22

)
: C11 ∈ Rr×r, C12 ∈ R(n−r)×r, C22 ∈ R(n−r)×(n−r)

}
⊆ Rn×n, 

(3)
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where there is a r× (n− r) block of zeros at the top right of any matrix in C. For a given 
matrix U ∈ Rn×n, let us also introduce the sets

UCU� =
{
UCU� : C ∈ C

}
, and NUCU�

� = Nn
� ∩ UCU�.

The main issue with [4, Theorem 2] is that it considers a different version of the NSPSDP 
problem, where it is implicitly assumed that the solution A belongs to UCU�, where the 
matrix U comes from the SVD of X = UΣV �. Hence the problem considered in [4] is 
actually

inf 
A∈NUCU�

�

‖AX −B‖2
F , (NPC)

which is different than the original NSPSDP problem (NP). Although the infimums 
of (NPC) and (NP) coincide, the optimal solution of (NPC) might not be attained in 
some cases, see Theorem 2.5 below, while that of (NP) always is; see Theorem 3.1 in 
the next section.

In the following we provide a revised version of [4, Theorem 2] with this additional 
constraint which is not present in the original paper but was accidentally imposed in the 
proof of the result.

Theorem 2.5. [4, Theorem 2, revised] Let X,B ∈ Rn×m and consider the SVD

X = UΣV � := (U1 U2 )
(

Σ1 0
0 0

)
(V1 V2 )� , (4)

where Σ1 ∈ Rr×r has full rank. Then

inf 
A∈NUCU�

�

‖AX −B‖2
F = inf 

A∈Nn
�
‖AX −B‖2

F = min 
A11∈N r

�
‖A11Σ1 − U�

1 BV1‖2
F + ‖BV2‖2

F .

Moreover, let us introduce

Â11 = arg min
A11∈N r

�

‖A11Σ1 − U�
1 BV1‖2

F := Ĥ11 + Ŝ11,

where Ĥ11 and Ŝ11 are, respectively, the symmetric and skew-symmetric part of Â11. Let 
Z = U�

2 BV1Σ−1
1 , the following holds:

1. If ker(Ĥ11) ⊆ ker(Z), then a solution of the problem (NPC) is

A� = U

(
Â11 0
Z K + R

)
U� = U1Â11U

�
1 + U2ZU�

1 + U2(K + R)U�
2 ,
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where R ∈ R(n−r)×(n−r) is skew-symmetric and K ∈ R(n−r)×(n−r) is symmetric 
such that

K � 1
4ZH†

11Z
�.

Since the infimum of (NP) and (NPC) coincide (see (4)), A� is also an optimal 
solution of (NP).

2. Otherwise the infimum of (NPC) is not attained, and we can construct a solution 
A

(ε)
� ∈ Nn

� such that

‖A(ε)
� X −B‖2

F ≤ inf 
A∈Nn

�
‖AX −B‖2

F + ε

for any

0 < ε <

{
min{1, ‖Â11Σ1 − U�

1 BV1‖2
F } if ‖Â11Σ1 − U�

1 BV1‖2
F 	= 0,

1 otherwise.

Consider the two SVDs

Ĥ11 = (W1 W2 )
(

Λ 0
0 0

)
(W1 W2 )� ,

Ĥ
(ε)
11 = (W1 W2 )

(
Λ 0
0 Γ(ε)

)
(W1 W2 )� ,

where Λ ∈ Rs×s is invertible and Γ(ε) ∈ Rr−s×r−s is the diagonal matrix with entries 
ε/β, with

β =
{

4
√
r − s‖Σ1‖F ‖Â11Σ1 − U�

1 BV1‖F if ‖Â11Σ1 − U�
1 BV1‖2

F 	= 0,

4
√
r − s‖Σ1‖F otherwise.

Defining Â(ε)
11 = Ĥ

(ε)
11 + Ŝ11, we construct A(ε)

� as follows

A
(ε)
� = U

(
Â11 0
Z K(ε) + R

)
U� = U1Â11U

�
1 + U2ZU�

1 + U2(K(ε) + R)U�
2 , (5)

where R ∈ R(n−r)×(n−r) is skew-symmetric and K(ε) � 1
4Z(Ĥ(ε)

11 )−1Z�.

Proof. We report the proof of [4, Theorem 2] until the additional constraint A ∈ UCU�

arises, where the set C is defined in (3). Let A ∈ Nn
� and set

Â := U�AU = U�
(
H11 H�

21
H21 H22

)
U + U�

(
S11 −S�

21
S21 S22

)
U := H + S,
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where H and S are, respectively, the symmetric and skew-symmetric part of Â that have 
been decomposed and partitioned in blocks such that H11, S11 ∈ Rr×r. By definition S11
and S22 are skew-symmetric and, since H � 0, Lemma 2.1 implies that

H11 � 0, ker(H11) ⊆ ker(H21), H22 −H21H
†
11H

�
21 � 0.

We rewrite the objective function and we get

‖AX −B‖2
F = ‖UÂU�X −B‖2

F = ‖(H + S)U�X − U�B‖2
F

= ‖(H11 + S11)U�
1 X − U�

1 B‖2
F + ‖(H21 + S21)U�

1 X − U�
2 B‖2

F

=
∥∥((H11 + S11)Σ1 − U�

1 BV1 −U�
1 BV2

)∥∥2
F

+
∥∥((H21 + S21)Σ1 − U�

2 BV1 −U�
2 BV2

)∥∥2
F

= ‖(H11 + S11)Σ1 − U�
1 BV1‖2

F + ‖(H21 + S21)Σ1 − U�
1 BV1‖2

F + ‖U�
1 BV2‖2

F

+ ‖U�
2 BV2‖2

F ,

which implies

‖AX−B‖2
F = ‖(H11+S11)Σ1−U�

1 BV1‖2
F+‖(H21+S21)Σ1−U�

2 BV1‖2
F+‖BV2‖2

F . (6)

By taking the infimum of (6), infA∈Nn
�
‖AX −B‖2

F is equal to

inf 
H11�0,S11=−S�

11,
ker(H11)⊆ker(H21)

‖(H11 + S11)Σ1 − U�
1 BV1‖2

F + ‖(H21 + S21)Σ1 − U�
2 BV1‖2

F + ‖BV2‖2
F .

We note that in this last infimum the matrices H22 and S22 do not appear, meaning that 
the conditions S22 = −S�

22 and H22 −H21H
†
11H

�
21 � 0 can be ignored. By dropping the 

condition ker(H11) ⊆ ker(H21) and by denoting E = H21 + S21, we obtain

inf 
A∈Nn

�
‖AX −B‖2

F ≥ inf 
H11�0

S11=−S�
11

‖(H11 + S11)Σ1 − U�
1 BV1‖2

F

+ inf 
E∈R(n−r)×r

‖EΣ1 − U�
2 BV1‖2

F + ‖BV2‖2
F .

Since the second infimum in the right hand side is 0 and it is uniquely attained for 
E� = H21 + S21 = U�

2 BV1Σ−1
1 := Z, it holds that

inf 
A∈Nn

�
‖AX −B‖2

F ≥ ‖Â11Σ1 − U�
1 BV1‖2

F + ‖BV2‖2
F ,

where Â11 = Ĥ11+Ŝ11 ∈ N r
� is the unique solution of the first infimum (Lemma 2.4), and 

Ĥ11, Ŝ11 are its symmetric and skew-symmetric part, respectively. Thus the conditions 
found are
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H11 = Ĥ11, S11 = Ŝ11, H21 + S21 = Z,

ker(Ĥ11) ⊆ ker(H21), H22 −H21Ĥ
†
11H

�
21 � 0, (7)

together with the underlying constraint that S22 is skew-symmetric. The restriction of 
A ∈ UCU� is introduced here and it implies that H21−S21 = 0. Thus all the constraints 
yield that the solution is of the form

A� = U

((
Ĥ11

1
2Z

�
1
2Z K

)
+
(
Ŝ11 −1

2Z
�

1
2Z R

))
U� = U

(
Â11 0
Z K + R

)
U�,

where K � 1
4ZH†

11Z
� and R ∈ R(n−r)×(n−r) is skew-symmetric. The imposition of the 

constraint A ∈ UCU� implies that the infimum of the problem is not always attained. 
Indeed the condition of (7) that ker(Ĥ11) ⊆ ker(Z) is not fulfilled in general, especially 
if ker(Ĥ11) 	= {0}. For the continuation of the proof, we refer to [4, Theorem 2], where 
all the sub-cases (infimum attained or not) are discussed in detail. �
Remark 2. Besides solving a different NSPSDP problem with the additional constraint 
A ∈ NUCU�

� , the issue of the method by Baghel et al. concerns the norm of the 
solution found when the infimum of (NPC) is not attained, that is, when X has 
low-rank and ker(Ĥ11) 	= {0} is not contained in ker(Z). In that case, the matrix 
K(ε) � 1

4Z(Ĥ(ε)
11 )−1Z� used to define A(ε)

� has a very large norm, going to infinity as ε
goes to zero. This leads to a huge norm solution, as it will be shown in the numerical 
examples.

3. A new approach for the NSPSDP problem

In Section 2, we have detected that an additional constraint A ∈ UCU� had been 
introduced in the optimization problem studied in [4], changing it from (NP) to (NPC). 
Thus in the following result, we fix this issue and uncover the remarkable property that, 
as opposed to (P),

the infimum of the NSPSDP problem (NP) is always attained.

We characterize the set of minimizers of the problem and we determine the family of the 
solutions for the original NSPSDP problem.

Theorem 3.1. Let X,B ∈ Rn×m and consider the SVD

X = UΣV � := (U1 U2 )
(

Σ1 0
0 0

)
(V1 V2 )� ,

where Σ1 ∈ Rr×r has full rank. Then

inf 
A∈Nn

�
‖AX −B‖2

F = min 
A11∈N r

�
‖A11Σ1 − U�

1 BV1‖2
F + ‖BV2‖2

F .
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Moreover, let us introduce

Â11 = arg min
A11∈N r

�

‖A11Σ1 − U�
1 BV1‖2

F := Ĥ11 + Ŝ11,

where Ĥ11 and Ŝ11 are, respectively, the symmetric and skew-symmetric part of Â11. 
Then any solution of the problem (NP) is of the form

A� = U

(
Â11 M�

Z N + G

)
U� = U1Â11U

�
1 + U2ZU�

1 + U1M
�U�

2 + U2(N + G)U�
2 ,

where Z = U�
2 BV1Σ−1

1 ∈ R(n−r)×r, M ∈ R(n−r)×r, G ∈ R(n−r)×(n−r) is skew
symmetric, N ∈ R(n−r)×(n−r) is symmetric, and they fulfill the conditions

ker(Ĥ11) ⊆ ker(Z + M), N � 1
4(Z + M)H†

11(Z + M)�,

so that A� ∈ Nn
�.

Proof. We proceed as in Theorem 2.5, until the introduction of the unnecessary con
straint that the solution belongs to UCU�. With the same notation, let A ∈ Nn

� and 
set

Â := U�AU = U(H + S)U� := U

((
H11 H�

21
H21 H22

)
+
(
S11 −S�

21
S21 S22

))
U�.

Let Â11 ∈ N r
� be the unique solution (provided by Lemma 2.4) of

inf 
A∈Nn

�
‖AX −B‖2

F = ‖Â11Σ1 − U�
1 BV1‖2

F + ‖BV2‖2
F ,

and denote by Ĥ11, Ŝ11 its symmetric and skew-symmetric part, respectively. The con
ditions on the sub-matrices of the solution found in the proof of Theorem 2.5 are

H11 = Ĥ11, S11 = Ŝ11, H21 + S21 = U�
2 BV1Σ−1

1 = Z, ker(Ĥ11) ⊆ ker(H21).

In particular it is not required that H21 = S21 = 1
2Z, but only that their sum is equal 

to Z. Thus this constraint simply implies that A� is of the form

A� = U

(
Â11 M�

Z N + G

)
U� = U1Â11U

�
1 +U2ZU�

1 +U1M
�U�

2 +U2(N +G)U�
2 , (8)

where M ∈ R(n−r)×r, G ∈ R(n−r)×(n−r) is skew-symmetric, N ∈ R(n−r)×(n−r) is sym
metric and they fulfill the conditions

ker(Ĥ11) ⊆ ker(Z + M), N � 1
4(Z + M)H†

11(Z + M)�. (9)
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This ensures that all A� of the form of (8) belong to Nn
�. Since they satisfy (6), they are 

all solutions of the optimization problem (NP). �
Theorem 3.1 shows that

UFU� := {UFU� : F ∈ F} = arg min
A∈Nn

�

‖AX −B‖2
F , (10)

where F is the matrix family defined as

F =
{(

Â11 M�

Z N + G

)
: G = −G�, N � 1

4(Z + M)H†
11(Z + M)�,

Z = U�
2 BV1Σ−1

1 , ker(Ĥ11) ⊆ ker(Z + M) 
}
.

We notice that F is not empty, since for instance

F :=
(
Â11 −Z�

Z 0

)
∈ F ,

by choosing M = −Z and N = 0 that fulfill the constraints given in (9). This provides 
a solution A = UFU� of (NP) that attains the infimum, but A / ∈ UCU� and hence it 
cannot be found by the method proposed in [4].

Now that we have introduced a new family of solutions for the NSPSDP problem 
(NP), we provide a simplified characterization of the matrix family F , in which the 
constraint concerning the kernels in (9) is removed. In this way it will be also easier to 
highlight low-norm and low-rank properties of matrices in the family.

Lemma 3.2. With the same notation as in Theorem 3.1, the set F that can be used to 
characterize optimal solutions of (NP) (see (10)) is given by

F =
{(

Â11 (YW�
1 − Z)�

Z N + G

)
: G = −G�, N � 1

4Y Λ−1Y �, Y ∈ R(n−r)×s,

Z = U�
2 BV1Σ−1

1

}
,

where

Â11 + Â�
11

2 
= Ĥ11 := (W1 W2 )

(
Λ 0
0 0

)
(W1 W2 )�

is an SVD of Ĥ11, s ≤ r, Λ ∈ Rs×s is invertible, W1 ∈ Rr×s and W2 ∈ Rr×(r−s).
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Proof. The condition on the null spaces of Ĥ11 and Z + M in (9) is equivalent to 
state that there exists a matrix Y ∈ R(n−r)×s such that Z + M = YW�

1 . Indeed 
W := (W1 W2 ) ∈ Rr×r is an orthonormal matrix and ker(Ĥ11) = W2 implies

(Z + M)W2 = YW�
1 W2 = 0.

Thus

N � 1
4YW�

1 (W1Λ−1W�
1 )W1Y

� = 1
4Y Λ−1Y �. �

3.1. Minimum-norm solution for the NSPSDP problem

Now we look for the matrices in the set of optimal solutions of the NSPSDP problem, 
namely UFU�, with the smallest possible Frobenius norm. That is, we want to minimize 
the Frobenius norm of

A = U

(
Â11 (YW�

1 − Z)�
Z N + G

)
U� ∈ UFU�

where all the matrices fulfill the conditions in Lemma 3.2. Let us introduce the differen
tiable function

f(Y ) := ‖YW�
1 − Z‖2

F︸ ︷︷ ︸
=:g(Y ) 

+ 1 
16
∥∥Y Λ−1Y �∥∥2

F︸ ︷︷ ︸
=:h(Y ) 

, Y ∈ R(n−r)×s. (11)

Note that f implicitly depends on the fixed matrices X and B, since W1, Z and Λ do.

Lemma 3.3. The function f defined in (11) is strictly convex in Y and its minimum is 
unique.

Proof. We first show that g is strictly convex and that h is convex, therefore their linear 
combination f is strictly convex. Then we prove that f attains a minimum, which is 
unique by strict convexity.

Let us define g1(x) = x2 and g2(Y ) = ‖YW�
1 −Z‖F . The function g1 is strictly convex 

and increasing on [0,+∞), while the function g2 is convex on R(n−r)×s, since for any 
α ∈ (0, 1) and any Y1, Y2 ∈ R(n−r)×s,

g2(αY1 +(1−α)Y2) = ‖α(Y1W
�
1 −Z)+(1−α)(Y2W

�
1 −Z)‖F ≤ αg2(Y1)+(1−α)g2(Y2).

Thus g = g1 ◦ g2 is strictly convex. In fact, its Hessian matrix is the identity, meaning 
that it is perfectly conditioned. The unique minimizer of g(Y ) is given by ZW1.

Let us now prove the convexity of the quartic function

h(Y ) = ‖Y Λ−1Y �‖2
F = trace((Y Λ−1Y �)2).
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Define the diagonal matrix D := Λ−1, which has, by construction, positive diagonal 
entries, and let

h1(X) = trace(X2), h2(Y ) = Y DY �.

The function h1 is operator monotone (see [7, Definition 2.1]), that is, for any 
X1, X2 ∈ Sn−r

� such that X1 
 X2, we have h1(X1) > h1(X2). Indeed, if λi and μi

are the eigenvalues of X1 and X2, respectively,

trace(X2
1 −X2

2 ) =
n−r∑
i=1 

λ2
i − μ2

i

=
n−r∑
i=1 

(λi + μi)(λi − μi) ≥ (n− r) min
i 

(λi + μi)trace(X1 −X2) > 0

since X1 −X2 
 0. Moreover h1 is a convex function, since it fulfills the hypothesis of 
[7, Theorem 2.10], which states that if ϕ : R → R is convex, then X → trace(ϕ(X)) is 
convex, where ϕ(X) is meant as a matrix function; in this case ϕ(x) = x2. The function 
h2 is operator convex, that is, for any α ∈ (0, 1) and any Y1, Y2 ∈ R(n−r)×s,

αg2(Y1) + (1 − α)g2(Y2) − g2(αY1 − (1 − α)Y2)

= α(1−α)
(
Y1DY �

1 + Y2DY �
2 − Y1DY �

2 − Y2DY �
1
)

= α(1−α)(Y1−Y2)D(Y1−Y2)� � 0.

Thus, for any α ∈ (0, 1) and any Y1, Y2 ∈ R(n−r)×s, the properties of h1 and h2 yield the 
convexity of h:

h(αY1 + (1 − α)Y2) = h1(h2(αY1 + (1 − α)Y2))

≤ h1(αh2(Y1) + (1 − α)h2(Y2)) ≤ αh(Y1) + (1 − α)h(Y2).

The function f is trivially bounded from below by 0, and it is continuous with bounded 
level sets, since for any ρ > 0

f(Y ) ≤ ρ ⇒ ‖Y ‖F = ‖YW�
1 ‖F ≤ ‖YW�

1 − Z‖F + ‖Z‖F ≤ √
ρ + ‖Z‖F .

Thus its infimum is attained while strict convexity implies its uniqueness. �
Thanks to the properties of f(Y ) shown in Lemma 3.3, the following result provides 

the unique minimum Frobenius norm solution of (NP), and it also shows its low-rank 
properties.

Theorem 3.4. Using the same notation as in Theorem 3.1, Lemma 3.2 and Lemma 3.3, 
the minimum Frobenius norm solution of (NP) is
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A� := U

(
Â11 (Y�W

�
1 − Z)�

Z 1
4Y�Λ−1Y �

�

)
U�,

where Y� is the unique global minimizer of

min 
Y ∈R(n−r)×s

‖YW�
1 − Z‖2

F + 1 
16‖Y Λ−1Y �‖2

F = min 
Y ∈R(n−r)×s

f(Y ).

Moreover the symmetric part of A� has rank s, which is the smallest possible rank of the 
symmetric part of a matrix in UFU�, while the skew-symmetric part of A� has rank not 
greater than 2r.

Proof. Since the Frobenius norm is unitary invariant and by using the characterization 
of Lemma 3.2, we obtain

‖A�‖2
F = ‖Â11‖2

F + ‖Z‖2
F + ‖Y�W

�
1 − Z‖2

F + ‖N + G‖2
F .

The first two addends of the sum are fixed. For the fourth, it holds that

‖N + G‖2
F = ‖N‖2

F + 2trace(NG) + ‖G‖2
F = ‖N‖2

F + ‖G‖2
F ,

since trace(NG) = −trace(NG) = 0 and thus the choice G = 0 is optimal. Regarding 
the choice of N , recall that the definition of F implies that N = Δ+ 1

4Y Λ−1Y � for some 
Δ � 0. As shown in [4, Lemma 3], the unique solution of the minimization problem

min 
Δ∈Nn

�

∥∥∥∥Δ + 1
4Y Λ−1Y �

∥∥∥∥2
F

is Δ = 0 and hence the optimal choice N = 1
4Y Λ−1Y � yields

inf 
A∈UFU�

‖A‖2
F = ‖Â11‖2

F + ‖Z‖2
F + inf 

Y ∈R(n−r)×s

(
‖YW�

1 − Z‖2
F + 1 

16
∥∥Y Λ−1Y �∥∥2

F

)
.

(12)
Hence, minimizing the norm of A ∈ UFU� is equivalent, up to constant summands, to 
minimize f(Y ). Lemma 3.3 shows that the minimum of f is uniquely attained and so 
A� is the unique minimizer of minA∈UFU� ‖A‖2

F .
The symmetric part of A� is

H� = A� + A�
�

2 
=
(

Ĥ11
1
2 (Y�W

�
1 )�

1
2Y�W

�
1

1
4Y�Λ−1Y �

�

)
=
(
W1
1
2Y�

)(
Λ Is
Is Λ−1

)(
W�

1
1
2Y

�
�

)
,

where Is denotes the s× s identity matrix, and hence

rank(H�) = rank
(

Λ Is
Is Λ−1

)
= s.
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Moreover any matrix in F has symmetric part with rank not smaller than s, since using 
the Schur complement yields

rank
(

Ĥ11
1
2 (Y�W

�
1 )�

1
2Y�W

�
1 N

)
≥ rank

(
Ĥ11 0
0 N − 1

4Y�Λ−1Y �
�

)
≥ s.

To conclude the proof, we have for the skew-symmetric part of A� that

rank
(
A� −A�

�

2 

)
= rank

(
Ŝ11

1
2(Y�W

�
1 − 2Z)�

1
2 (2Z − Y�W

�
1 ) 0

)
≤ 2r. �

3.2. Computing and approximating the minimum-norm solution

Theorem 3.4 describes the minimum-norm and minimum-rank solution of (NP). How
ever a closed-form for the unique solution (Lemma 3.3) of the problem,

Y� = arg min 
Y ∈R(n−r)×s

‖YW�
1 − Z‖2

F + 1 
16‖Y Λ−1Y �‖2

F = arg min 
Y ∈R(n−r)×s

f(Y ), (13)

is not available. We propose two different approaches to overcome this issue.

Computing the minimum-norm solution To solve (13), we use a standard non-linear 
optimization algorithm, namely gradient descent. The gradient of f can be computed 
(see, e.g., [21]) explicitly:

∇f(Y ) = 1
4Y Λ−1Y �Y Λ−1 + 2(YW�

1 − Z)W1 = 1
4Y Λ−1Y �Y Λ−1 + 2Y − 2ZW1.

Note that f(Y ) is not globally Lipschitz because of the quartic term ‖Y Λ−1Y �‖2
F . 

Although gradient descent is a relatively naive method, it worked very well for our 
purpose, because the problem is typically well conditioned (the Hessian is the identity 
plus a semidefinite matrix). In particular a simple backtracking line search will work well 
in our case. We update the current approximation Y by choosing a suitable step size γ
that satisfies the Armijo condition:

f(Y − γ∇f(Y )) ≤ f(Y ) − cγ‖∇f(Y )‖2, (14)

where 0 < c < 1. This allows us to get global convergence towards Y�, since f is trivially 
bounded from below by 0 and ∇f is locally Lipschitz continuous (see [20, Theorem 3.2]). 
We will provide the details in Algorithm 2.

Replacing the minimum-norm solution using Cardano’s formula Instead of approximat
ing Y� using gradient descent applied on (13), we propose the following approximation:
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Y = αZW1, α ∈ [0, 1].

This choice represents a convex combination of the minimizer of the first term 
‖YW�

1 − Z‖2
F in (13), namely Y = ZW1, and of the minimizer of the second term, 

namely Y = 0. The following lemma provides the optimal choice for the parameter α, 
which minimizes f(αZW1).

Lemma 3.5. Let

ϕ(α) := f(αZW1) = α4

16 
‖ZW1Λ−1W�

1 Z�‖2
F +α2‖ZW1W

�
1 ‖2

F−2α〈ZW1W
�
1 , Z〉+‖Z‖2

F .

Then, the unique minimum of ϕ is

α� := arg min
α∈R 

ϕ(α) =
3

√
p

2 
+
√

p2

4 
+ p3

27 +
3

√
p

2 
−
√

p2

4 
+ p3

27 ∈ (0, 1), (15)

where

p = 8‖ZW1‖2
F

‖ZW1Λ−1W�
1 Z�‖2

F

> 0.

Proof. The best value for α can be computed by finding a real zero of the derivative of 
ϕ, given by

ϕ′(α) = α3

4 
‖ZW1Λ−1W�

1 Z�‖2
F + 2α‖ZW1‖2

F − 2‖ZW1‖2
F .

Since ϕ′(0) < 0 and ϕ′(1) > 0, there must be a zero in (0, 1). The equation ϕ′(α) = 0 is 
equivalent to

α3 + pα− p = 0, (16)

which is a cubic equation with discriminant Δ = −(4p2 + 27p3). Since Δ is negative, 
Cardano’s formula (see, e.g., [6]) implies that the unique solution of (16) is α� defined 
in (15). �
Remark 3. We have observed numerically that the solutions Y� and Y� = α�ZW1 are 
typically close. Moreover it is possible to give a simple bound for the difference of the 
functional evaluated in these two points:

‖ZW1W
�
1 − Z‖2

F ≤ f(Y�) ≤ f(Y�) ≤ f(αZW1), ∀α ∈ R
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and the choices α = 0 and α = 1 imply

|f(Y�) − f(Y�)| ≤ min
{

1 
16‖ZW1Λ−1W�

1 Z�‖2
F , ‖Z‖2

F − ‖ZW1W
�
1 − Z‖2

F

}
.

We will compare these two solutions in Section 5.

4. An algorithm for the NSPSDP problem

Relying on Lemma 3.2 and Theorem 3.4, we now propose an algorithm for the 
NSPSDP problem (NP). The method follows the approach from [4], but it performs 
a different post-processing of the solution of the reduced r × r dimensional problem, in 
order to avoid the unnecessary constraint introduced in (NPC), and hence avoid un
bounded solutions when the solution of (NPC) is not attained. Algorithm 1 describes 
our proposed algorithm, which attains small Frobenius norm solutions with low-rank 
properties. 

Algorithm 1 Algorithm for the NSPSDP problem (NP).
Input: Two matrices X,B ∈ Rn×m.
Output: An optimum minimum-norm solution A� of (NP); see Theorem 3.4.

1: Compute a rank-revealing SVD of X = (U1 U2 )
(Σ1 0

0 0
)

(V1 V2 )�, with Σ1 ∈ Rr×r where 
r = rank(X).

2: Solve the reduced r × r NSPSDP problem

Â11 = arg min
A11∈N r

�

‖A11Σ1 − U
�
1 BV1‖2

F := Ĥ11 + Ŝ11,

by means of a fast gradient method [19], exactly as done in [4].
3: Compute Z = U�

2 BV1Σ−1 and a thin SVD of Ĥ11 = W1ΛW�
1 , with Λ ∈ Rs×s where s = rank(Ĥ11).

4: Solve the optimization problem

Y� = arg min 
Y ∈R(n−r)×s

‖YW
�
1 − Z‖2

F +
1 
16

‖Y Λ−1
Y

�‖2
F ,

using gradient descent with backtracking line search; see Algorithm 2.
5: Return the matrix

A� = (U1 U2 )
(
Â11 (Y�W

�
1 − Z)�

Z 1
4Y�Λ−1Y �

�

)
(U1 U2 )� .

The first two steps of Algorithm 1 involving the solution of the reduced problem are the 
same as in [4]. The novelty of our algorithm is the post-processing procedure described in 
Steps 3, 4 and 5, which ensures that the algorithm always provides a minimum of problem 
(NP), while [4] was only providing a large-norm approximate solution (see (5)), in the 
case the infimum of (NPC) is not attained.
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Computation of Y� Step 4 in Algorithm 1 is solved by means of a gradient descent 
procedure, as shown in Algorithm 2.

Algorithm 2 Backtracking line search with Armijo condition for solving problem (13).
Input: The matrices Z ∈ R(n−r)×r, W1 ∈ Rr×s, Λ ∈ Rs×s, a stepsize parameter θ > 1, a parameter c > 0, 

maximum number of iterations imax, maximum number of checks for the Armijo condition jmax and 
an error tolerance τ

Output: A solution Y� of (13), that minimizes f(Y ) = ‖YW�
1 − Z‖2

F + 1 
16

∥∥∥Y Λ−1Y �
∥∥∥2
F

.

1: Initialize Y0 = α�ZW1 defined by the Cardano approximation (15).
2: Set i = 0 and e0 = 1; compute f(Y0) and

∇f(Y0) =
1
4
Y0Λ−1

Y
�
0 Y0Λ−1 + 2Y0 − 2ZW1.

3: while i < imax and ‖∇f(Yi)‖F ≤ τ and ei ≤ 10−15 do
4: Set

γ =
1 
10

·
‖Yi‖F

‖∇f(Yi)‖F

.

5: for j = 1, . . . , jmax do
6: Compute Ŷ = Yi − γ∇f(Yi).
7: if f(Ŷ ) ≤ f(Yi) − cγ‖∇f(Yi)‖2

F then
8: break
9: else

10: γ = γ/θ.
11: end if
12: end for
13: Update Yi+1 := Ŷ and compute ∇f(Yi+1).
14: Set i = i + 1 and ei = |f(Yi+1)−f(Yi)|

f(Yi) .
15: end while
16: return Y� := Yi.

The parameter θ introduced in the algorithm determines the reduction rate for the 
stepsize γ, the constant c is used in the Armijo condition (14), and the safety parameter 
jmax = 50 stops the algorithm in the case the line search fails to fulfill (14). In our 
experiments, we have always used θ = 1.5 and c = 10−4. In Section 5, we give more 
details about the stopping criterion for the algorithm.

Computing Y� In Step 4 of Algorithm 1 we may replace Y� with Y� = α�ZW1, where 
α� is defined in (15). This approximate solution allows us to avoid solving (13), while 
still preserving the low-rank properties of A�, since

A� := U

(
Â11 (Y�W�

1 − Z)�

Z 1
4Y�Λ−1Y �

�

)
U�

has a symmetric part of rank s and skew-symmetric part of rank bounded by 2r, as 
shown in the proof of Theorem 3.4 for Y�. However the solution A� is not guaranteed 
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to have minimum Frobenius norm. In the numerical experiments in Section 5, we will 
compare these two approaches, both in terms of computational time and size of the norm 
of the solution.

4.1. Computational complexity

Given X,B ∈ Rn×m with rank(X) = r, let us analyze the computational complexity 
of Algorithm 1:

1. The SVD in Step 1 requires O(mnmin(m,n)) flops.
2. As shown in [4], the complexity of the fast gradient method applied to the r × r

NSPSDP problem is dominated by the computation of the gradient AXX�−BX�, 
which is O(τ1r3), where τ1 is the number of iterations performed. See Section 5 below 
for a discussion on the stopping criterion used.

3. For Step 3, the cost of the computation of Z is O(nmr), while the computation of 
the SVD of Ĥ11 is O(r3).

4. The computation of the solution of the optimization problem in Step 4 is performed 
by means of a gradient descent method, which requires the computation of the matrix 
∇f(Y ) = Y Λ−1(Y �Y )Λ−1 + 2(Y − ZW1) at each iteration, leading to a cost of 
O(τ2((n− r)2r + s3)), where τ2 is the number of iterations performed. See Section 5
below for a discussion on the stopping criterion used.

5. Step 5 requires matrix multiplications whose cost sums up to O(n2r) flops.

Thus the overall cost of the algorithm is O(mnmin(m,n) + τ2(n− r)2r + τ1r
3). This 

cost reduces to O(mnmin(m,n) + τ1r
3) if the solution of the optimization problem in 

Step 4 of Algorithm 1 is replaced by Y� = α�ZW1, with α� defined as in (15).
Typically, m � n ≥ r since the number of variables is smaller than the number of 

measurements, and hence the most expensive step is the SVD computation in Step 1 in 
O(mnmin(m,n)) operations. We will provide numerical experiments on the scalability 
of Algorithm 1 in Section 5.5.

4.2. The algorithm for nearly low-rank X

The solution of the Procrustes problem (NP) may be also modified in order to take 
advantage of a possible low-rank property of the input data. When the matrix X is close 
to be rank-deficient, it is possible to replace it by its (k− 1)-rank approximation X̃ such 
that

σk ≤ ησ1,

where σi are the singular values of X and 0 < η � 1 is a small tolerance. The following 
result gives an idea of how this modification changes the error ‖AX−B‖F of the problem.
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Theorem 4.1. Given η > 0, let X = X̃ + ΔX be a decomposition of the form

X = U

⎛⎜⎜⎜⎜⎜⎜⎜⎝

σ1
. . .

σk−1
0

. . .
0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
V � + U

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0
. . .

0
σk

. . .
σq

⎞⎟⎟⎟⎟⎟⎟⎟⎠
V �,

where q = min(m,n) and σk ≤ ησ1. Define

γ̃ := min 
A∈Nn

�
‖AX̃ −B‖F := ‖ÃX̃ −B‖F , γ� := min 

A∈Nn
�
‖AX −B‖F := ‖A�X −B‖F ,

where A� is the unique minimizer of the original NSPSDP problem, while Ã is a mini
mizer of the perturbed NSPSDP problem with smallest norm. Then

γ̃ − ξ‖A�‖F ≤ γ� ≤ γ̃ + ξ‖Ã‖F , (17)

where ξ = ησ1
√
q − k + 1.

Proof. The norm of the perturbation ΔX is bounded by ξ since

‖ΔX‖F =

√√√√ q∑
i=k 

σ2
i ≤
√
η2(q − k + 1)σ2

1 ≤ ησ1
√

q − k + 1 = ξ.

Thus

γ� = ‖A�X −B‖F ≤ ‖Ã(X̃ + ΔX) −B‖F ≤ γ̃ + ‖Ã‖F ‖ΔX‖F ,
γ̃ = ‖ÃX̃ −B‖F ≤ ‖A�(X − ΔX) −B‖F ≤ γ� + ‖A�‖F ‖ΔX‖F

and the claim follows. �
While the upper bound of (17) contains ‖Ã‖F , which is generally small, the lower 

bound provided depends on ‖A�‖F , which may be very large when X has small non-zero 
singular values. Thus even a small perturbation can cause a huge change in the value of 
the functional ‖AX−B‖F . We will discuss more in detail this behavior in the numerical 
experiments in Section 5.

5. Numerical experiments

In this section, we compare the performances of four different methods for solving the 
NSPSDP problem:
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• Fast Gradient Method (FGM), applied directly to (NP), an optimal first-order 
method for convex problems developed in [19], as done in [4].

• ANalytic Fast Gradient Method (ANFGM) uses the semi-analytical approach pro
posed in [4] to reduce the dimension of the problem from n×m to r× r, solves it via 
FGM, and then uses the post-processing as in Theorem 2.5. This algorithm solves a 
more constrained NSPSDP problem, namely (NPC).

• MINimum Gradient Descent (MINGD) implements Algorithm 1.
• CARDano (CARD) follows the same approach as MINGD by implementing Algo

rithm 1, but it replaced the minimum-norm solution in step 4 by the solution obtained 
via the Cardano’s formula; see (15).

In [4], the performances of the interior point method (IPM) proposed in [14] and 
the convex Matlab software (CVX) [10,11] was compared to FGM and ANFGM. In 
most cases, IPM and CVX were slower and less accurate and hence we do not report 
their results here. The code and experiments are available from https://github.com/
StefanoSicilia/NS_Procr_min_norm.

Before providing a comparison on several types of data sets, let us discuss the stopping 
criterion and metrics used.

Stopping criteria ANFGM, MINGD and CARD reduce the size of the original problem, 
and then rely on the fast gradient method (FGM) proposed in [19]. We will use the same 
stopping criterion as in [4], namely when the kth iterate A(k) satisfies

‖A(k) −A(k−1)‖F < δ‖A(1) −A(0)‖F ,

with δ = 10−6, that is, the modification of A compared to the first step is less than 10−6, 
or when the maximum number of iteration kmax = 10000 is reached. We will use this 
stopping criterion for FGM, ANFGM, MINGD and CARD in all numerical experiments.

Regarding Algorithm 2 for the computation of Y� in MINGD, we stop the gradient 
descent algorithm when the iterate Y (k) satisfies one of the following conditions

‖∇(Y (k))‖F ≤ τ := 10−8, 
|f(Y (k+1)) − f(Y (k))|

f(Y (k)) 
≤ 10−15,

or when the number of iteration number exceeds imax = 500. The stopping criterion that 
is most often reached first is the one based on the norm of the gradient. However, in 
some cases, we observed that the objective function reached machine accuracy (about 
10−15) while the norm of the gradient was significantly larger than 10−8. The reason is 
the presence of a quartic term in f .

Metrics used to compare the algorithms We will use the following metrics to compare 
the algorithms: given a solution A computed by an algorithm, we will report

https://github.com/StefanoSicilia/NS_Procr_min_norm
https://github.com/StefanoSicilia/NS_Procr_min_norm
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Table 5.1
Results on a sample of 20 matrices, with n = 50, m = 70, and r = 20. Best solution highlighted in 
bold, if applicable.

Relative error ‖A‖F Time (sec.) rk(Sym(A)) rk(Skew(A))
ANFGM 0.8674 ± 0.0114 (2.07 ± 0.48) · 107 < 0.01 20 ± 0 40 ± 0

FGM 0.8674 ± 0.0114 1.2845 ± 0.0646 0.86 ± 0.44 39.40 ± 0.68 40 ± 0
MINGD 0.8674 ± 0.0114 0.9116 ± 0.0576 < 0.01 9.40 ± 0.68 40 ± 0
CARD 0.8674 ± 0.0114 0.9408 ± 0.0582 < 0.01 9.40 ± 0.68 40 ± 0

Table 5.2
Results on a sample of 20 matrices, with n = 100, m = 100, and r = 40. Best solution highlighted 
in bold, if applicable.

Relative error ‖A‖F Time (sec.) rk(Sym(A)) rk(Skew(A))
ANFGM 0.8007 ± 0.0060 (2.12 ± 0.22) · 107 0.03 ± 0.01 40 ± 0 80 ± 0

FGM 0.8007 ± 0.0060 1.5392 ± 0.0461 5.37 ± 1.86 78.90 ± 0.64 80 ± 0
MINGD 0.8007 ± 0.0060 1.1459 ± 0.0285 0.05 ± 0.03 18.90 ± 0.64 80 ± 0
CARD 0.8007 ± 0.0060 1.1960 ± 0.0408 0.03 ± 0.00 18.90 ± 0.64 80 ± 0

1. The relative error

‖AX −B‖F
‖B‖F

,

which measures the quality of a solution.
2. The Frobenius norm of the solution, ‖A‖F .
3. The time required by the algorithm (in seconds).
4. The rank of the symmetric part of the solution, rk(Sym(A)).
5. The rank of the skew-symmetric part of the solution, rk(Skew(A)).

5.1. Synthetic data

Similarly to [4,8], we generate some synthetic data for different values of n,m. For 
each dimension, we generate 20 random matrices and report the mean and standard 
deviation of the results. Given m, n and r, a rank r matrix X ∈ Rn×m is generated as 
the product of two randomly generated matrices of dimension n × r and r × n whose 
entries follow the standard normal distribution, that is, X = randn(n,r)*randn(r,m) 
in Matlab, while the entries of B are generated uniformly at random, B = randn(n,m) 
in Matlab.

We choose r � min(m,n) in order to highlight the low-rank properties of the algo
rithms and solutions. Tables 5.1, 5.2 and 5.3 show the results of the four algorithm to 
solve (NP) for various dimensions.

For all the choices of n,m and r, we observe a similar behavior of the algorithms:

• All the methods provide the same relative error, up to a difference of order 10−9. 
Although ANFGM does not solve the same problem, it constructs a solution using 
the parameter ε = 10−8 in (5), and hence the solution generated has a relative error 
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Table 5.3
Results on a sample of 20 matrices, with n = 200, m = 200, and r = 50. Best solution highlighted in 
bold, if applicable.

Relative error ‖A‖F Time (sec.) rk(Sym(A)) rk(Skew(A))
ANFGM 0.8776 ± 0.0028 (9.22 ± 4.84) · 106 0.03 ± 0.00 50 ± 0 100 ± 0

FGM 0.8776 ± 0.0028 1.235 ± 0.0198 16.67 ± 6.34 171.60 ± 4.07 100 ± 0
MINGD 0.8776 ± 0.0028 0.7859 ± 0.0154 0.12 ± 0.08 23.95 ± 0.83 100 ± 0
CARD 0.8776 ± 0.0028 0.8203 ± 0.021 0.03 ± 0.01 23.95 ± 0.83 100 ± 0

very close to that of the other algorithms, even though MINGD and CARD are 
preferable since they attain a minimum.

• The norm of the solution provided by ANFGM is very large (of order 107), while, in 
contrast, FGM, MINGD and CARD have solutions with norms of comparable size, 
although MINGD provides always the smallest value, as shown in Theorem 3.4.

• The CPU time required by FGM is significantly larger (approximately 50 times) 
than that required by the other algorithms, because it does not reduce the size of 
the problem.

• The symmetric part of the solution provided by MINGD and CARD has the lowest 
rank, followed by ANFGM. On the other hand, the symmetric part of the solution 
of FGM is almost full rank.

• All the skew-symmetric parts of the solutions have the same rank equal to 2r.

In summary the best methods on our set of synthetic data are MINGD and CARD: 
they provide a solution with small norm (the one from CARD is generally 4% larger 
than that of MINGD), the computation is fast (MINGD is a bit slower than CARD; 
see the next sections for more experiments) and they satisfy the low-rank properties of 
Theorem 3.4, which makes the storage of the solution more efficient. Instead FGM is 
quite slow, while ANFGM provides solutions with very large norm and neither of these 
two methods provides a solution whose symmetric part has the smallest possible rank.

5.2. Synthetic data with perturbed low-rank X

In order to study the stability of the approaches, we add a full-rank perturbation of 
order η = 10−8 to the previous synthetic data and we observe the behavior of the algo
rithms. The perturbed matrix X = randn(n,r)*randn(r,m)+η*randn(n,m) is now full 
rank and this guarantees a unique solution to (NP). We also consider two other versions 
of MINGD and CARD, that will be denoted by MINGDlr and CARDlr respectively, 
where the matrix X is replaced by its rank-k approximation and k is chosen such that

σk+1(X) ≤ ησ1(X),

and we test the results given by Theorem 4.1.
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Table 5.4
Perturbed X: results on a sample of 20 matrices, with n = 50, m = 70, and r = 20. Best solution 
highlighted in bold, if applicable.

Relative error ‖A‖F Time (sec.) rk(Sym(A)) rk(Skew(A))
ANFGM 0.7544 ± 0.0135 (5.08 ± 0.21) · 108 0.20 ± 0.01 43.10 ± 0.64 50 ± 0

FGM 0.8703 ± 0.0146 1.2692 ± 0.0486 2.06 ± 0.04 39.45 ± 0.69 50 ± 0
MINGD 0.7544 ± 0.0135 (5.08 ± 0.21) · 108 0.22 ± 0.04 43.10 ± 0.64 50 ± 0
CARD 0.7544 ± 0.0135 (5.08 ± 0.21) · 108 0.22 ± 0.03 43.10 ± 0.64 50 ± 0

MINGDlr 0.8703 ± 0.0146 0.8986 ± 0.0410 0.01 ± 0.00 9.45 ± 0.69 40 ± 0
CARDlr 0.8703 ± 0.0146 0.9272 ± 0.0441 0.01 ± 0.00 9.45 ± 0.69 40 ± 0

Table 5.5
Perturbed X: results on a sample of 20 matrices, with n = 100, m = 100, and r = 40. Best solution 
highlighted in bold, if applicable.

Relative error ‖A‖F Time (sec.) rk(Sym(A)) rk(Skew(A))
ANFGM 0.6506 ± 0.0134 (2.16 ± 0.98) · 109 0.70 ± 0.01 93.60 ± 1.82 100 ± 0

FGM 0.8064 ± 0.0073 1.5450 ± 0.0469 8.02 ± 0.51 78.50 ± 0.83 100 ± 0
MINGD 0.6506 ± 0.0134 (2.16 ± 0.98) · 109 0.89 ± 0.06 93.60 ± 1.82 100 ± 0
CARD 0.6506 ± 0.0134 (2.16 ± 0.98) · 109 0.80 ± 0.01 93.60 ± 1.82 100 ± 0

MINGDlr 0.8064 ± 0.0073 1.1504 ± 0.0350 0.04 ± 0.02 18.50 ± 0.83 80 ± 0
CARDlr 0.8064 ± 0.0073 1.1940 ± 0.0449 0.03 ± 0.00 18.50 ± 0.83 80 ± 0

Table 5.6
Perturbed X: results on a sample of 20 matrices, with n = 200, m = 200, and r = 50 Best solution 
highlighted in bold, if applicable.

Relative error ‖A‖F Time (sec.) rk(Sym(A)) rk(Skew(A))
ANFGM 0.6401 ± 0.0098 (3.62 ± 1.11) · 109 2.21 ± 0.05 192.25 ± 1.52 200 ± 0

FGM 0.8767 ± 0.0031 1.2380 ± 0.0196 32.07 ± 0.33 171.70 ± 2.83 200 ± 0
MINGD 0.6401 ± 0.0098 (3.62 ± 1.11) · 109 2.20 ± 0.06 192.70 ± 1.13 200 ± 0
CARD 0.6401 ± 0.0098 (3.62 ± 1.11) · 109 2.19 ± 0.06 192.70 ± 0.98 200 ± 0

MINGDlr 0.8767 ± 0.0031 0.7863 ± 0.0169 0.10 ± 0.06 24.30 ± 0.80 100 ± 0
CARDlr 0.8767 ± 0.0031 0.8223 ± 0.0215 0.03 ± 0.00 24.30 ± 0.80 100 ± 0

In this way, we analyze if it is possible to exploit the nearly low-rank properties of 
the problem, see the discussion around Theorem 4.1. Tables 5.4, 5.5 and 5.6 show the 
results of the six algorithms.

For all the choices of n,m and r we observe a similar behavior of the algorithms:

• ANFGM, MINGD and CARD provide the same result, by computing the unique 
solution of the perturbed NSPSDP problem. Thus relative error, norm of the solution 
and the rank of its symmetric and skew-symmetric part coincide.

• MINGDlr and CARDlr compute the solution of the low-rank problem associated to 
the low-rank approximation of X, and also FGM seems to do so. The reason is that 
FGM is a first-order method, with linear convergence of O((1 − κ)t), where t is the 
iteration count and κ = σr(X)

σ1(X) ∈ (0, 1) is the ratio between the rth and first singular 
value of X. Since the last n−r are very small, it cannot converge within the allotted 
number of iterations. These three methods have the same relative error, which is 
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Table 5.7
Results for the matrix NSPSDP problem with X = JnJ

�
m and B = H. Best solution 

highlighted in bold, if applicable.

Relative error ‖A‖F Time (sec.) rk(Sym(A)) rk(Skew(A))
ANFGM 0.9605 5.8633 · 1015 4.0469 500 498 

FGM 0.9605 1.0172 · 104 207.9887 321 20 
MINGD 0.9605 8.8618 · 103 3.8801 5 12
CARD 0.9605 8.8633 · 103 3.6061 5 12

approximately 30 − 40% larger than the unperturbed solutions. However FGM is 
much slower than MINGDlr and CARDlr.

• The norm of the solutions of ANFGM, MINGD and CARD are very large, in contrast 
to the small norms of the other methods. The reason is that X has very small non
zero singular values. To be able to scale up these small contribution to approximate 
B, the norm of A in these directions must be of the order of the inverse of these 
singular values.

• ANFGM, MINGD and CARD are slower than MINGDlr and CARDlr. This is because 
they cannot reduce the problem size much since X has full rank, while MINGDlr and 
CARDlr work with a r × r subproblem.

• Only the solution computed by MINGDlr and CARDlr have low-rank properties.

These experiments show that the low-rank approximation improves the speed of the 
algorithm and provides low-norm solution, with low-rank properties, but at the price 
of increasing the relative error. This is unavoidable, since the unique solution of the 
full-rank problem has large norm.

5.3. A large low-rank example

Now we consider an example of large dimension, with n = 500, m = 10000 and r = 10. 
We define

Jn =

⎛⎜⎜⎜⎝
1 · · · 1

0
. . .

...
...

. . . 1
0 · · · 0

⎞⎟⎟⎟⎠ ∈ Rn×r, H =

⎛⎜⎜⎜⎝
1 0 · · · 0

2 1
. . .

...
...

. . . . . . 0
n · · · 2 1

⎞⎟⎟⎟⎠ ∈ Rn×m, (18)

and we solve the NSPSDP problem (NP) for X = JnJ
�
m and B = H. The results are 

shown in Table 5.7.
We observe similar results as the ones obtained for the synthetic data. In particular 

all the methods have the same relative error, ANFGM provides a large norm solution, 
and FGM is by far the slowest method. In contrast MINGD and CARD perform well and 
their solutions have low-rank properties. This example shows that it is possible to solve 
the low-rank NSPSDP problem of large dimension relatively fast, we further discuss the 
scalability in the next section.
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Table 5.8
Results for the tiger plush toy example where X is replaced by its best rank-2 approxi
mation, X2.

Relative error ‖A‖F Time (sec.) rk(Sym(A)) rk(Skew(A))
ANFGM (lr) 0.2022 6.6785 <0.01 2 2 

FGM (lr) 0.2022 7.4655 0.0158 3 2 
MINGD (lr) 0.2022 6.6781 0.0143 2 2 
CARD (lr) 0.2022 6.6781 <0.01 2 2 

5.4. A real-world application

As a practical example, we study the local compliance estimation problem already 
considered in [4,14], concerning a tiger plush toy. The dimensions of the problem are 
n = 3 and m = 12 and the data matrices (with two digits of accuracy) are

X� =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−0.32 0.03 0.06
−0.33 −0.02 0.06
−0.36 0.08 0.06
−0.30 0.03 0.05
−0.32 0.00 0.07
−0.34 0.07 0.05
−0.24 0.07 0.05
−0.21 −0.01 0.02
−0.33 0.16 0.10
−0.25 0.09 0.06
−0.22 0.00 0.03
−0.31 0.15 0.09

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, B� =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1.43 0.15 −0.44
−1.40 −0.31 −0.42
−1.38 0.44 −0.42
−1.43 0.14 −0.44
−1.40 −0.31 −0.42
−1.37 0.43 −0.42
−1.43 0.16 −0.43
−1.40 −0.32 −0.42
−1.38 0.42 −0.43
−1.43 0.15 −0.44
−1.40 −0.33 −0.42
−1.37 0.42 −0.44

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The matrix X has rank r = n = 3, hence the solution to the problem is unique and 
all the methods converge to the same matrix provided by [4,14], with a relative error of 
18.99%. In order to run the algorithms in a non-full rank setting, we replace X by its 
best rank-2 approximation, X2. Note that ‖X − X2‖F /‖X‖F = 3.5% so X2 is a good 
approximation of X. Table 5.8 shows the results of the methods applied on X2. 

All methods find a solution with minimum relative error. However, CARD and 
MINGD are the only ones to find a minimizer with minimum norm and minimum rank; 
FGM does not find a solution with minimum rank nor minimum norm, and ANFGM 
does not find a solution with minimum norm.

5.5. Scalability

In order to study the scalability of the algorithm, we run the methods considered in the 
previous examples with increasing dimension and we show the trend of the computational 
time required to solve the problem. We study two examples, where the dimensions are 
fixed as n = m and r = n/2 for n = 2j with j = 2, . . . , 12. In the first example we 
consider a sample of 10 random matrices X,B ∈ Rn×m with rank(X) = r, as done for 
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Fig. 5.1. Scaling computational times for n = m = 2j and r = n/2. On the left the average time over 10
runs with X a low-rank random matrix, while on the right the example defined by (18). FGM computation 
exceeded 500 seconds for n ≥ 210 in both cases and we did not report its result for larger n.

the synthetic data, while for the second example we consider X = JnJ
�
n and B = H, 

with Jn and H defined as in (18).
Fig. 5.1 shows a similar trend for both examples. For ANFGM, MINGD and CARD, 

the complexity is dominated by the SVD computation (O(mn2) flops). The trend of the 
computational time is approximately a power function of n with exponent between 2
and 3. Also in these cases ANFGM is generating solutions with very large norms (e.g., 
larger than 1014 for j ≥ 9), as in the previous examples, while FGM is significantly more 
expensive and its time requirement is larger for n = 29 than that of the other three 
methods in dimension n = 211.

Interestingly, for the second example (Fig. 5.1, right plot), MINGD and CARD are 
faster than ANFGM for large values of n (namely n = 211, 212). The reason is the 
initialization step of ANFGM that does not scale as well. For n = 212, the solution of 
MINGD and CARD coincide, and their CPU time is the same.

6. Conclusion

In this paper, we proposed a state-of-the-art semi-analytical approach for the NSPSDP 
problem. Our approach is inspired by that of Baghel et al. [4], but we resolved an issue 
when X is rank deficient. By doing so, we were able to prove that the solution of the 
NSPSDP problem is always attained (Theorem 3.1). Moreover, we proposed a way to 
compute the minimum-norm and minimum-rank solution (Theorem 3.4). We illustrated 
the effectiveness of the new proposed algorithm on several numerical experiments.
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